584 research outputs found

    Empleo de la programación en los métodos probabilísticos para la generación de números aleatorios y sus aplicaciones en la simulación

    Get PDF
    En el presente artículo se propone la utilización de un lenguaje de programación para el aprendizaje, en las carreras técnicas, de los métodos probabilísticas. De manera específica, consideramos que para el estudio de los métodos probabilísticas que son utilizados en la generación de los números aleatorios, que se imparten en la asignatura de Probabilidades, el estudiante al usar la programación como herramienta, puede visualizar mejor, a través de ejemplos, las aplicaciones de las distribuciones: Normal, Poisson, Binomial, Exponencial y Muller, en la simulación de procesos y fenómenos de acuerdo a su perfil profesional

    Integración espacial en el mercado europeo de aceite de oliva

    Get PDF
    El objetivo de este trabajo es el estudio de la integración espacial del mercado europeo del aceite de oliva, a partir de los niveles de precios de los tres principales productores y comercializadores del producto a nivel mundial (España, Italia y Grecia) entre 1961 y 2007. El análisis se lleva a cabo aplicando la técnica multivalente de cointegracion, identificando tanto relaciones a corto como a largo plazo. Los resultados del análisis de precios muestran que esos mercados de aceite de oliva están altamente integrados, con una transmisión de precios completa de precios a largo plazo, resultando Italia el mercado líder, pese a que la producción española sea con diferencia la más elevada.The aim of this paper is to study the spatial integration of the European olive oil market, from the prices of the three main producers and traders in the world (Spain, Italy and Greece) between 1961 and 2007. The analysis is carried out using multivariate cointegration techniques, identifying the short-run and the long-run relationships. The empirical results show that the three olive oil markets are highly integrated, with a complete price transmission in the long run. They also suggest that Italy is the leader market being Spain the main produce

    The R statistical package for Health Sciences

    Get PDF
    Entre las múltiples utilidades que las nuevas tecnologías presentan a los profesionales sanitarios se encuentra la de poder disponer de un paquete estadístico de acceso gratuíto que ayude a la hora de analizar datos. Desde su nacimiento, el paquete estadístico R se ha ido desarrollando continuamente hasta llegar a ser un software con más de cinco mil paquetes adicionales que lo complementan y de los que también podemos disponer gratuitamente. El objetivo de este artículo es hacer una descripción de dicho software con las utilidades que tiene para las ciencias de la salud y como herramienta ofrecida por las nuevas tecnologías.Among the many utilities that new technologies offer to health professionals there is the availability of a free-access statistical package that would help when analyzing data. Since it was created, the R statistical package has undergone a continuous developing process to become a software with over five thousand additional packages that complement it and which are also freely available. The aim of this article is to provide a description of said software and its utilities with a view to its use by health sciences and as a tool offered to us by the new technologies

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA

    Construcción de las bases para la implementación de un programa de orientación profesional en relaciones laborales y en ciencias del trabajo

    Get PDF
    Con el propósito de construir las bases para una posterior implementación de orientación profesional, tanto en la Diplomatura de Relaciones Laborales como en la Licenciatura de Ciencias del Trabajo, se llevó a cabo un estudio con una amplia muestra de sujetos cuya población estaba constituida por todo el alumnado que había terminado una de las dos titulaciones, o las dos, que imparte nuestro centro (Facultad de Ciencias del Trabajo de la Universidad de Valladolid, Campus de Palencia) durante los tres últimos años. Este trabajo incluye la administración de un cuestionario en el que, además de una serie de items de tipo sociodemográfico, había otros que preguntaban la opinión de nuestros ex-alumnos/as sobre el plan de estudios que habían cursado y sobre las posibles carencias de éste. Se les preguntó igualmente qué añadirían o quitarían del plan de estudio de cara a conseguir una formación más completa, formación que, por otra parte, les facilitará una más exitosa búsqueda de empleo en el mercado de trabajo. Finalmente, se comentan los resultados obtenidos y se extraen las conclusiones pertinentes.______________________________In order to build the foundations for further implementation of a program of vocational guidance, both in the Bachelor of Industrial Relations in the Bachelor of Science Labour, we made a study with a large sample consisting of the entire student body he had completed one of these two studies, or both, in our center (Faculty of Labour Science of the University of Valladolid, Palencia Campus) over the past three years. This work includes the administration of a questionnaire which, in addition to a number of items of type sociodemographic, there were others who wondered what our ex students on curriculum and sent on possible shortcomings there of. They were also asked what they would add or remove of the curriculum towards achieving a more complete training, training, on the other hand, they provide a more successful job search in the labour market. Finally, we discussed the results and drew out the appropriate conclusions

    Working on Critical Thinking skills using the computer lab works of an Engineering subject

    Full text link
    [EN] A practical intervention was devised in order to promote and to assess Critical Thinking in undergraduate students of Engineering. First, in collaboration with specialists in education, the concept of Critical Thinking, and its skills and dispositions on which to focus on, was determined. Second, a teaching strategy was designed in order to be as effective as possible, considering the limitations of the intervention. This strategy took advantage of the computer lab sessions where discussion and questioning encouraged the development of Critical Thinking. Then, the instruments to assess the acquired skills and attitudes of the students were developed. Finally, a quantitative analysis of the results was conducted in order to evaluate the validity and reliability of the strategy. This paper presents a full description of the intervention carried on for two years. Besides the desired effects on the students performance, some conclusions regarding the development of appropriate instruments to deal with a large group of students are drawn. This intervention has proven to be effective in order to help the students to develop their Critical Thinking skills, and it is particularly suitable for large groups.This research was funded by the Universitat Politècnica de València through the project PIME/2018/DPTO. IMM.Giner-Navarro, J.; Sonseca, Á.; Martínez-Casas, J.; Carballeira, J. (2022). Working on Critical Thinking skills using the computer lab works of an Engineering subject. Multidisciplinary Journal for Education, Social and Technological Sciences. 9(2):23-45. https://doi.org/10.4995/muse.2022.1790823459

    Improved railway wheelset-track interaction model in the high-frequency domain

    Full text link
    [EN] As it is well known, there are various phenomena related to railway train-track interaction, some of them caused by the high frequency dynamics of the system, such as rolling noise when the vehicle runs over the track, as well as squeal noise and short-pitch rail corrugation for curved tracks. Due to these phenomena and some others unsolved so far, a large effort has been made over the last 40 years in order to define suitable models to study the train-track interaction. The introduction of flexibility in wheelset and rail models was required to have a more realistic representation of the wheel-rail interaction effects at high frequencies. In recently published train-track interaction models, the rails are modelled by means of Timoshenko beam elements, valid up to 1.5 kHz for lateral rail vibration and up to 2 kHz for vertical vibration. This confines the frequency range of validity for the complete train-track model to 1.5 kHz. With the purpose of extending the range of validity above 1.5 kHz, a 3D track model based on the Moving Element Method (MEM) is developed in this paper to replace the Timoshenko beam considered in earlier studies, adopting cyclic boundary conditions and Eulerian coordinates. The MEM approach considers a mobile Finite Element (FE) mesh which moves with the vehicle, so the mass of the rail flows with the vehicle speed but in the opposite direction through the mesh. Therefore, the MEM permits to fix the contact area in the middle of a finitely long track and to refine the mesh only around the contact area, where the forces and displacements will be more significant. Additionally, a modal approach is adopted in order to reduce the number of degrees of freedom of the rail model. Both strategies lower substantially the computational cost. Simulation results are presented and discussed for different excitation sources including random rail roughness and singularities such as wheel flats. All the simulation cases are carried out for a Timoshenko beam and a 3D MEM track model in order to point out the differences in the contact forces above the range of validity of the Timoshenko beam.The authors gratefully acknowledge the financial support of Ministerio de Economía y Competitividad and the European Regional Development Fund (project TRA2013-45596-C2-1-R), as well as Generalitat Valenciana (project Prometeo/2012/023) and Ministerio de Educación, Cultura y Deporte (project SP20140659) as part of Programa Campus de Excelencia Internacional.Martínez Casas, J.; Giner Navarro, J.; Baeza González, LM.; Denia Guzmán, FD. (2017). Improved railway wheelset-track interaction model in the high-frequency domain. Journal of Computational and Applied Mathematics. 309(1):642-653. https://doi.org/10.1016/j.cam.2016.04.034S642653309

    On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers

    Full text link
    "This is the peer reviewed version of the following article: Navarro-Jiménez, José Manuel, Enrique Nadal, Manuel Tur, José Martínez-Casas, and Juan José Ródenas. 2020. "On the Use of Stabilization Techniques in the Cartesian Grid Finite Element Method Framework for Iterative Solvers." International Journal for Numerical Methods in Engineering 121 (13). Wiley: 3004-20. doi:10.1002/nme.6344, which has been published in final form at https://doi.org/10.1002/nme.6344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Fictitious domain methods, like the Cartesian grid finite element method (cgFEM), are based on the use of unfitted meshes that must be intersected. This may yield to ill-conditioned systems of equations since the stiffness associated with a node could be small, thus poorly contributing to the energy of the problem. This issue complicates the use of iterative solvers for large problems. In this work, we present a new stabilization technique that, in the case of cgFEM, preserves the Cartesian structure of the mesh. The formulation consists in penalizing the free movement of those nodes by a smooth extension of the solution from the interior of the domain, through a postprocess of the solution via a displacement recovery technique. The numerical results show an improvement of the condition number and a decrease in the number of iterations of the iterative solver while preserving the problem accuracy.The authors wish to thank the Spanish "Ministerio de Economía y Competitividad," the "Generalitat Valenciana," and the "Universitat Politècnica de València" for their financial support received through the projects DPI2017-89816-R, Prometeo 2016/007 and the FPI2015 program, respectively.Navarro-Jiménez, J.; Nadal, E.; Tur Valiente, M.; Martínez Casas, J.; Ródenas, JJ. (2020). On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers. International Journal for Numerical Methods in Engineering. 121(13):3004-3020. https://doi.org/10.1002/nme.6344S3004302012113Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011Ruiz-Gironés, E., & Sarrate, J. (2010). Generation of structured hexahedral meshes in volumes with holes. Finite Elements in Analysis and Design, 46(10), 792-804. doi:10.1016/j.finel.2010.04.005Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method. Computational Mechanics, 41(1), 121-133. doi:10.1007/s00466-007-0173-yDüster, A., Parvizian, J., Yang, Z., & Rank, E. (2008). The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering, 197(45-48), 3768-3782. doi:10.1016/j.cma.2008.02.036Nadal, E., Ródenas, J. J., Albelda, J., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2013). Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 1-19. doi:10.1155/2013/953786Nadal, E., Ródenas, J. J., Sánchez-Orgaz, E. M., López-Real, S., & Martí-Pellicer, J. (2014). Sobre la utilización de códigos de elementos finitos basados en mallados cartesianos en optimización estructural. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 155-165. doi:10.1016/j.rimni.2013.04.009Giovannelli, L., Ródenas, J. J., Navarro-Jiménez, J. M., & Tur, M. (2017). Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elements in Analysis and Design, 136, 37-57. doi:10.1016/j.finel.2017.07.010Schillinger, D., & Ruess, M. (2014). The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Archives of Computational Methods in Engineering, 22(3), 391-455. doi:10.1007/s11831-014-9115-yBurman, E., Claus, S., Hansbo, P., Larson, M. G., & Massing, A. (2014). CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7), 472-501. doi:10.1002/nme.4823Tur, M., Albelda, J., Marco, O., & Ródenas, J. J. (2015). Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Computer Methods in Applied Mechanics and Engineering, 296, 352-375. doi:10.1016/j.cma.2015.08.001Tur, M., Albelda, J., Nadal, E., & Ródenas, J. J. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 98(6), 399-417. doi:10.1002/nme.4629De Prenter, F., Verhoosel, C. V., van Zwieten, G. J., & van Brummelen, E. H. (2017). Condition number analysis and preconditioning of the finite cell method. Computer Methods in Applied Mechanics and Engineering, 316, 297-327. doi:10.1016/j.cma.2016.07.006Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R., & Keyes, D. (2011). Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods. International Journal for Numerical Methods in Engineering, 90(3), 311-328. doi:10.1002/nme.3318Menk, A., & Bordas, S. P. A. (2010). A robust preconditioning technique for the extended finite element method. International Journal for Numerical Methods in Engineering, 85(13), 1609-1632. doi:10.1002/nme.3032Dauge, M., Düster, A., & Rank, E. (2015). Theoretical and Numerical Investigation of the Finite Cell Method. Journal of Scientific Computing, 65(3), 1039-1064. doi:10.1007/s10915-015-9997-3Elfverson, D., Larson, M. G., & Larsson, K. (2018). CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences, 5(1). doi:10.1186/s40323-018-0099-2Verhoosel, C. V., van Zwieten, G. J., van Rietbergen, B., & de Borst, R. (2015). Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Computer Methods in Applied Mechanics and Engineering, 284, 138-164. doi:10.1016/j.cma.2014.07.009Burman, E. (2010). Ghost penalty. Comptes Rendus Mathematique, 348(21-22), 1217-1220. doi:10.1016/j.crma.2010.10.006BadiaS VerdugoF MartínAF. The aggregated unfitted finite element method for elliptic problems;2017.Jomo, J. N., de Prenter, F., Elhaddad, M., D’Angella, D., Verhoosel, C. V., Kollmannsberger, S., … Rank, E. (2019). Robust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elements in Analysis and Design, 163, 14-30. doi:10.1016/j.finel.2019.01.009Béchet, É., Moës, N., & Wohlmuth, B. (2008). A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. International Journal for Numerical Methods in Engineering, 78(8), 931-954. doi:10.1002/nme.2515Hautefeuille, M., Annavarapu, C., & Dolbow, J. E. (2011). Robust imposition of Dirichlet boundary conditions on embedded surfaces. International Journal for Numerical Methods in Engineering, 90(1), 40-64. doi:10.1002/nme.3306Hansbo, P., Lovadina, C., Perugia, I., & Sangalli, G. (2005). A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numerische Mathematik, 100(1), 91-115. doi:10.1007/s00211-005-0587-4Burman, E., & Hansbo, P. (2012). Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Applied Numerical Mathematics, 62(4), 328-341. doi:10.1016/j.apnum.2011.01.008Gerstenberger, A., & Wall, W. A. (2008). An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 197(19-20), 1699-1714. doi:10.1016/j.cma.2007.07.002AxelssonO. Iterative solution methods;1994.Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837Xiao, Q. Z., & Karihaloo, B. L. (s. f.). Statically Admissible Stress Recovery using the Moving Least Squares Technique. Progress in Computational Structures Technology, 111-138. doi:10.4203/csets.11.5Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903Zhang, Z. (2001). Advances in Computational Mathematics, 15(1/4), 363-374. doi:10.1023/a:1014221409940González-Estrada, O. A., Nadal, E., Ródenas, J. J., Kerfriden, P., Bordas, S. P. A., & Fuenmayor, F. J. (2013). Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics, 53(5), 957-976. doi:10.1007/s00466-013-0942-8Nadal, E., Díez, P., Ródenas, J. J., Tur, M., & Fuenmayor, F. J. (2015). A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 287, 172-190. doi:10.1016/j.cma.2015.01.013ZienkiewiczOC TaylorRL. The finite element method fifth edition volume 1: the basis.MA:Butterworth‐Heinemann;2000.Brenner, S. C., & Scott, L. R. (1994). The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. doi:10.1007/978-1-4757-4338-

    Topology and shape optimization of dissipative and hybrid mufflers

    Full text link
    [EN] This article presents a Topology Optimization (TO) method developed for maximizing the acoustic attenuation of a perforated dissipative muffler in the targeted frequency range by optimally distributing the absorbent material within the chamber. The Finite Element Method (FEM) is applied to the wave equation formulated in terms of acoustic pressure (chamber) and velocity potential (central duct, due to the existence of thermal gradients and mean flow) in order to evaluate the acoustic performance of the noise control device in terms of Transmission Loss (TL). Sound propagation through the chamber fibrous material is modelled considering complex equivalent acoustic properties, which vary spatially not only as a function of temperature, but also as a function of the lling density, since non-homogeneous density distributions are considered. The acoustic coupling at the perforated duct is performed by introducing a coordinate-dependent equivalent impedance. The objective function to maximize is expressed as the mean TL in the targeted frequency range. The sensitivities of this function with respect to the filling density of each element in the chamber are evaluated following the standard adjoint method. The Method of Moving Asymptotes (MMA) is used to update the design variables at each iteration of the TO process, keeping the weight of absorbent material equal or lower than a given value, while maximizing attenuation. Additionally, several particular designs inferred from the topology optimization results are analyzed. For example, the sizing optimization of a number of rings is carried out simultaneously with the aforementioned TO process (density layout). A reactive chamber is added in order to evaluate the TL of a hybrid muffler and its shape optimization is also carried out simultaneously with the aforementioned TO. Results show an increase in the muffler's mean TL at target frequencies, for all cases under study, while the amount of absorbent material used is maintained or even reduced.Ferrándiz-Catalá, B.; Denia, FD.; Martínez Casas, J.; Nadal, E.; Ródenas, JJ. (2020). Topology and shape optimization of dissipative and hybrid mufflers. Structural and Multidisciplinary Optimization. 62(1):269-284. https://doi.org/10.1007/s00158-020-02490-xS269284621Allard JF, Atalla N (2009) Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials. Wiley, ChichesterAntebas AG, Denia FD, Pedrosa AM, Fuenmayor FJ (2013) A finite element approach for the acoustic modelling of perforated dissipative mufflers with non-homogeneous properties. Math Comput Model 57:1970–1978Atkinson KE (1989) An Introduction to Numerical Analysis. John Wiley & Sons, 2nd EditionAzevedo FM, Moura MS, Vicente WM, Picelli R, Pavanello R (2017) Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method. Struct Multidiscip Optim 58:2239–2252Barbieri R, Barbieri N (2006) Finite element acoustic simulation based shape optimization of a muffler. Appl Acoust 67:346–357Chang YC, Chiu MC (2008) Shape optimization of one-chamber perforated plug/non-plug mufflers by simulated annealing method. Int J Numer Methods Eng 74:1592–1620Chiu M (2011) Optimization design of hybrid mufflers on broadband frequencies using the genetic algorithm. Arch Acoust 36:795–822Christie DRA (1976) Measurement of the acoustic properties of a sound-absorbing material at high temperatures. J Sound Vib 46:347–355De Lima KF, Lenzi A, Barbieri R (2011) The study of reactive silencers by shape and parametric optimization techniques. Appl Acoust 72:142–150Delany ME, Bazley EN (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3:105–116Denia FD, Sánchez-Orgaz EM, Baeza L, Kirby R (2016) Point collocation scheme in mufflers with temperature gradient and mean flow. J Comput Appl Math 291:127–141Denia FD, Sánchez-Orgaz EM, Martínez-Casas J, Kirby R (2015) Finite element based acoustic analysis of dissipative mufflers with high temperature and thermal-induced heterogeneity. Finite Elem Anal Des 101:46–57Denia FD, Selamet A, Fuenmayor FJ, Kirby R (2007) Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. J Sound Vib 302:1000–1017Denia FD, Selamet A, Martínez MJ, Torregrosa AJ (2006) Hybrid mufflers with short lateral chambers: analytical, numerical and experimental studies. In: 13th International Congress on Sound and Vibration (ICSV 13) ViennaFok VA (1963) in Russian. Alternatively, see S.N. Rschevkin, A course of lectures on the theory of sound, Pergamon, LondonIngard KU (1953) On the design of acoustic resonators. J Acoust Soc Am 25:1037–1061Jensen JS (2012) Topology optimization. In: Romeo F, Ruzzene M (eds) Wave Propagation in Linear and Nonlinear Periodic Media. CISM Courses and Lectures, vol 540. Springer, ViennaKirby R, Cummings A (1999) Prediction of the bulk acoustic properties of fibrous materials at low frequencies. Appl Acoust 56:101–125Kirby R, Denia FD (2007) Analytic mode matching for a circular dissipative muffler containing mean flow and a perforated pipe. J Acoust Soc Am 122:3471–3482Kirby R, Williams PT, Hill J (2013) The effect of temperature on the acoustic performance of splitter silencers. In: 42nd International Congress and Exposition on Noise Control Engineering – INTERNOISE, 7, pp 5826–5833Lee JS, Göransson P, Kim YY (2015) Topology optimization for three-phase materials distribution in a dissipative expansion chamber by unified multiphase modeling approach. Comput Methods Appl Mech Eng 287:191–211Lee JW (2015) Optimal topology of reactive muffler achieving target transmission loss values: Design and experiment. Appl Acoust 88:104–113Lee JW, Kim YY (2009) Topology optimization of muffler internal partitions for improving acoustical attenuation performance. Int J Numer Methods Eng 80:455–477Lee SH, Ih JG (2003) Empirical model of the acoustic impedance of a circular orifice in grazing mean flow. J Acoust Soc Am 114:98–113Munjal ML (2014) Acoustics of Ducts and Mufflers, John Wiley & Sons, 2nd EdnPeat KS, Rathi KL (1995) A finite element analysis of the convected acoustic wave motion in dissipative mufflers. J Sound Vib 184:529–545Pierce AD (1990) Wave equation for sound in fluids with unsteady inhomogeneous flow. J Acoust Soc Am 87:2292–2299Rao SS (2011) The Finite Element Method in Engineering, Butterworth-Heinemann. 5th EditionSánchez-Orgaz EM (2016) Advanced numerical techniques for the acoustic modelling of materials and noise control devices in the exhaust system of internal combustion engines, Ph. D, Thesis, Universitat Politècnica de ValènciaSelamet A, Lee IJ, Huff NT (2003) Acoustic attenuation of hybrid mufflers. J Sound Vib 262:509–527Selamet A, Xu MB, Lee IJ, Huff NT (2005) Dissipative expansion chambers with two concentric layers of fibrous material. International Journal of Vehicle Noise and Vibration 1:341– 357Selamet A, Xu MB, Lee IJ, Huff NT (2006) Effect of voids on the acoustics of perforated dissipative mufflers. International Journal of Vehicle Noise and Vibration 2:357–372Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance optimization. Struct Multidiscip Optim 22:116–124Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359– 373Williams PT, Kirby R, Malecki C, Hill J (2014) Measurement of the bulk acoustic properties of fibrous materials at high temperatures. Appl Acoust 77:29–36Yedeg EL, Wadbro E, Berggren M (2016) Interior layout topology optimization of a reactive muffler. Struct Multidiscip Optim 53:645–656Yoon GH (2013) Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J Sound Vib 332:1172–1187Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The Finite Element Method: its Basis and Fundamentals. Elsevier Butterworth-Heinemann, BurlingtonZoutendijk G (1960) Methods of Feasible Directions. Elsevier, Amsterda
    corecore